1’ .
Python for European Immigrants:
Breaking Barriers to Education

:***** Co-funded by g?l.ll;ﬁg
3 the European Union f”.% WORLD |mgeniou5 knuwledge

Table of Contents

[alugeTe [V Tot 1 o] o HE OO O PP SRR 2
Chapter 1= WhatisS PYthON. ...ttt e e e e e e e s tr e e e e e s saraeeesennsaaeeas 2
Chapter 2 - IDE INTrOQUCTION......cceiiiieeiieeeiteeeeeeteee ettt e e e e e e e e e eeeeeaeeaaaaaaaaaaaaaaeaeeeens 2
Chapter 3= The Print fUNCHION. ...t e et e e e e e rra e e e e e aaaee e e e anaeas 7
Chapter 4 = STHNG VariablesS......cou e eiiiiiieiieee ettt e e e s tre e e s s abteeesssssbaeeesensssaees 7
(O] aFT o) (=T g T @] g or=1 (=1 o F-1 1 [o] o ISP PSR 8
Chapter 6 - INTeger VariablesS... .ottt e e e e e e e e e s s aesavareaaeeeas 8
Chapter 7 = FIOat Vari@bleS........ueeeeeeiiiiieeeee ettt e e e e e e e e e e e aaaaaaeaeeeeeeeees s nnnnnns 9
Chapter 8 - NamMiNG VariableS......cou ittt e et e e s e sartee e s ssbaaeeesesassaaeessnnns 10
CRAPTEr O = BOOICANS. ... ettt et e e e e e e st e e e e e e e e e e s s s saabbbbaaaaaeeeeeeennannnn 10
Chapter 10 = USEI INPUL....eeeiiiiiccceeeeeeee e e e e e eeeee e e e e e e e e e e e e eeeeeeeeeeeeaaaeaaaaeaeasesssesssssssssssessssssnsees 11
(O] o P o1 (=T gt B V] o 1= Tot= 11 4 Lo [UPPUPRR 11
Chapter 12 - if/elSe StateMENTS...cccc e e e e e e e e e e e e e e e e e eeeas 12
O aFT o) (=T gt B I [To [T a1 = 1 o] o PSPPSR 13
(O] o= o1 (=T gt VA =) SRRSO P UPPUUURRR 13
Chapter 15 - COMPAriSON OPEIATOIS. . .uiiiiiiiieeeeiiiiiieeeeee et e e eeeeeeerrereeeeeeeeseeessssansrssereseeeeeseasssannnns 14
Chapter 16 - The randint() FUNCTION..........uuiiiiiiieeee e e e e e e e e e e 15
Chapter 17 - The MOAUIO OPEIATON.....uuiiiiiiiiiieieiitteee ettt e et e e e e e s s sabbereeeeeeeeessssssnnnes 16
Chapter 18 = WHIlE LOOP...uuuiueieeieiieeieiiceeeeeeeee e e e e e e e e e e e eeeeeeaeeeaeeaaeaaaaaaaeaesssssssesssssssssssssssssssasenes 16
Chapter 19 - LOOPS INSIAE IOOPS..uutiiiiiiiiiiieiiitieeeeee e eeeecrrtee e e e e e e e e e e esaarraaeeeeeeeaeeeessnssnsasneeeeens 17
(O] g o1 (=T i O I I 1] €T UUR P 17
(O] aF=T o) (=T gZAt I (o] gl (oY o] o 1= TSP 18
(O E= o1 =T A B I Tt { o] g = [19
(O] aFT o) =1 g AC T (V] o Tox (o] 1O RPN 18
Chapter 24 - Multiple function parameters and retUrN..........cccceiiiieeeeee e 19

Table of Contents 2

Introduction

Welcome to the world of the programming
language Python! This book aims to help you
learn Python, regardless of your experience.
We will explore Python in a step-by-step
manner. This book will provide you with
the necessary tools to start your journey
in Python - even if you have never written
a line of code before! We will provide you
with a detailed explanation of all the steps
necessary to correctly use this powerful
programming language, from the choice
of software to use to multiple practical
examples that will help you master Python
and programming as a whole.

Chapter 1 - Whatis
Python

Python was created in 1991 by Guido Van
Rossum, and it was designed to be simple,
readable, and powerful. Over the years,
Python has grown to become one of the most
popular languages in the world. Industry
reportsin 2025 show that 48% of developers
use Python regularly, which makes it the
second most popular language globally.

Why is Python so popular?

@ Beginner-friendly: The syntax (rules of
the language) is clear and easy to read.

@ Versatile: Python has a wide range of
applications, including web development,
data science, artificial intelligence,
automation, and more.

@ Trusted by big names: It's used by
companies like Google, NASA, and Netflix
to power some of their tech innovations.

@ Supportive community: With millions of
users worldwide, it's easy to find tutorials,
forums, and libraries to help you learn
and build your projects.

Python was built to be used not only by

professional programmers but also by
scientists, mathematicians, and other
people that are not that familiar with
programming. This design philosophy makes
Python simple, readable, and approachable,
allowing experts in different fields to focus
on solving their problems without the need
to master complex programming concepts
first.

Whether you want to build a website,
analyze data, create a video game, or create
an app, Python gives you the tools to easily
bring your ideas to life, and that’s why it’s
one of the best first programming languages
you can learn.

Chapter 2 - IDE
Introduction

Before we can write Python code, we need
a place to type and run it. This place is
called an “IDE” (Integrated Development
Environment). An IDE is a tool that helps you
write, test, and run code. There are multiple
IDEs available. We will display our code
examples in a universal way, so you can use
the IDE of your choice.

We recommend you to use Replit to get
started in an easy way. It is free, browser-
based (no installation needed), and
beginner-friendly. Also, it allows you to
directly execute your code by just clicking a
“Run” button. This makes it a great tool for
us to use in our case.

To get you started on Replit you'll need to
follow the next steps:

Step 1: Create an Account

Go to replit.com and create a free account if
you don't have one yet.

Step 2: Create a New Project

Once you're logged in, click the “Create”
button to start a new project as shown on
Image 1.

Introduction
—

http://replit.com

projects34

~ [0
+ Create A%pp ((

(@ Home

0 Apps

® Deployments

= Usage Hi Maksim, what do you want to make?
2\ Teams

Explore Repli

© Bounties

Templates

Q Learn

& Link in bio [Book scanner [@ Alchat

0 Documentation

Your Starter Plan
Free Apps Your recent Apps View All =

ss¢ Agent Checkpoints
Mo 2

@ Run

@ Public

4 Upgrade to Replit Core

Image 1- Create project

Then, click on “Choose a Template”, choose
Python as your language, give your project
a name, and finally click “Create App” as
shown on Image 2.

projects34

+ Create App

Create a new App

Create with Replit Agent Choose a Template Import from GitHub

Template Title

Search Templates Q Name your App

Favorites Privacy

* [t
replit Anyone can view and fork this App.

Templates Private & < Core

HTML, CSS, IS Only you can see and edit this App.

replit

Node.js

replit
Your Starter Plan C+
Free Apps replit

c
« Agent Checkpoints i
b E lP : reolit

+ Upgrade to Replit Core

Image 2 - Choose a Template and Create App

ﬁcmracter 2 - IDE Introduction 4

Step 3: Explore the Interface

Now, close the “Assistant”’ tab and hit “Run”
to show the “console” tab as shown on
images 3 and 4.

(@ 4 python_without_borders B v Q 2+ Invite ® Deploy O

(3 ¥ Assistant + ((

= + Newchat

New chat with Assistant

Inspect for errors Improve the visual design Brainstorm new features

Add dark mode toggle Optimize for mobile Explain this code

Claude 3.5 Sonnet V2 (i

O [2files
e Spaces:2 Hist

Image 3 - Assistant tab

(@ @ python_without_borders B v Q 2+ Invite @ Deploy O

(] main.py * +
main.py

1

® Spaces: 2

Image 4 - Run button

ﬁcmracter 2 - IDE Introduction 5

You will now see two main areas. The left
side is where you write your program.
Here you can enter the code you want the
computer to execute. On the right side you
see the console, where your program will
run and show the output.

& python_without_borders @ Deploy O

main.py + H >_ Console +
main.py Format ® Show Only Latest

python3 mai % Ask Assistant 1s « Just now

Image 5 - Work environment

Whenever you write code, type it on the
left side. When your code is ready, click the
“Run” button at the top of the screen. Replit
will execute your code and show the results
on the right.

Character 2 - IDE Introduction 6

Chapter 3 - The Print
function

Okay! Now that you are ready to code we
will start with a very simple program. Every
programmer remembers their first program.
We will start by letting the computer output
a text Hello world!. In Python, this is usually
done by using the print() function. The print()
function tells the computer to display text or
information on the console.

To let the computer know that we want it to
output Hello world!, we can write:

1 print("Hello world!")

After executing the program, we get the
following output:

1 Hello world!

The word print tells your computer to output
something to the console. The parentheses
behind the print command contain whatever
you want to show on the console. In this case
we want to show the words Hello world!.
The quotation marks indicate that what we
want the computer to print is a text. They
will not be shown in the console when the
program is executed.

We can replace “Hello world” with any
content we want. For example, if we would
write

1 print("Something Else")
the console would show:

1 Something Else

Try it yourself!

@ Use the print() function in your own
Python code to make your name appear
on the screen.

Solution:

1 print("Max™)
Output:
1 Max

Chapter 4 - String
Variables

Now that you know how to display text, let’s
take things a step further. Instead of writing
text directly inside the print() function, we
can store it in a variable.

A variable is like a container that holds
information. In the case of a string variable,
we can store text inside a variable and then
use it later.

In Python, you can create a string variable

by assigning the text to a name using the “=
operator.

1 name = "Jenny"
2 print(name)

When we run the program, the output is:
1 Jenny

In this case we write name = “Jenny” and
then print(hame). Please note that in
the print command we are not using any
quotation marks this time. The reason for
this is that we are referencing the variable
name this time - meaning that we print
whatever the value of the variable name is
just in this specific moment.

Chapter 3 - The Print function 7

Chapter 5 -
Concatenation

In the last chapter, you learned how to
store text in variables. Now you will learn
how to combine strings with each other.
This is where concatenation comes in.
Concatenation might sound complicated,
but it simply means joining strings together.

In Python, to do that, you just need to use
the “+” operator. Here is an example:

first_name = "Jenny"
last_name = "Smith"
full_name = first_name +
print(full_name)

non

+ last_name

A WNE

Output:

When the code is executed, Python prints

" n

Jenny Smith in the console. The “+

1 Jenny Smith

operator joined the strings together. Notice
the “ “ (space) in line 3 keeps the words
separated - without it the output would be
JennySmith, all stuck together. Adding a
space in quotation marks keeps the words
separate.

Concatenation also works with text variables.
For example, | could write:

1 name = "Max"
2 print("Hello, "
day!")

+ name + ", I hope you're having a great

When running the project, the output is now:
1 Hello, Max, I hope you're having a great day!

Try it yourself!

@ Defineavariable foraperson’s name, then
use concatenation to print a sentence
like this: “My name is Sarah”.

Solution:

1 name = "Max"

2 print("My name is " + name)
Output:

1 My name is Max

Chapter 6 - Integer
Variables

So far, we have covered strings, which can
contain texts as their value. Now you will
learn about variables that work with whole
numbers. They are called integer variables.
Integers are whole numbers, and they're
very useful for math, counting, and more.

In Python, you can create an integer variable
by assigning a number to a variable using
the "=" operator. Let us try out the following
code:

1 age = 25

2 printCage)
Output:

1 25

In this example the variable age holds the
number 25. Unlike strings, integers do not
have quotation marks. You can replace 25
with any whole number you like. The big
difference is that you can do math with
these kinds of variables. For example, we
could write:

1 age = 13

2 year = 2025

3 birth_year = year - age
4 print(birth_year)

Output:
1 2012

We calculate the birth year of someone
by doing math using variables. We assign
2025 to the year variable, and 13 to the age
variable. Then, we create another variable
birth_year and assign the difference of year
and age to it.

Chapter 5 - Concatenation 8

Try it yourself!

@ Create an integer variable called value_1
and use print() to display it. Then,
define one more integer variable called
value_2 and display the result of different
operations, such as multiplication,
addition, subtraction, and division.

Solution:

value_1 = 10
print(value_1)
value_2 =5

print(value_l + value_2
print(value_1 - value_2
print(value_1 * value_2
print(value_l / value_2

co~NOYUILPS WN P

Output:

10
15
5
50
2.0

U WN

Chapter 7 - Float
Variables

We already know how to create variables
that hold whole numbers or integers, as
we call them. Let us now look at the next
variable type: Floats. Floats are numbers
with decimals. They are useful when you
need to work with prices, measurements,
percentages and more.

You can create a float variable by assigning a
decimal number. For example, we can write:

1 net_price = 19.99

The variable net_price becomes a float
variable and holds the decimal number
19.99. Unlike whole numbers (integers),
floats have a decimal point.

Keep in mind: The decimal point can not be
a comma, as Python will not interpret the
value correctly then. It has to be a dot.

You can also do math with float variables.
For example, we can add a tax to our net_
price variable and print the total price:

net_price = 19.99

tax = 0.21

total_price = net_price + (net_price * tax)
print(total_price)

A wWwnN

Output:
1 24.1879

Try it yourself!

& Create two variables that hold different
prices and a third variable that holds their
sum. Then, calculate the tax (0.21) of the
sum and use print() to display it.

Solution:
1 price_l = 10.50
2 price_2 = 6.99
3 sum = price_l + price_2
4 tax = sum*0.21
5 print(tax)

Output:
1 3.6729000000000003

Chapter 7 - Float Variables 9

Chapter 8 - Naming
Variables

Now that we have worked with multiple
variables types already, we will take a closer
look at the names we choose for them. There
are several good practices that you should
follow to make your code more readable.

First of all, a variable name should be
indicative of what kind of value this variable
holds. For instance, if | create a variable that
holds the price of a product, it would make
a lot of sense to name the variable “price”
and not something abstract like “x”. This will
make it a lot easier for you or even another
person to understand your code later.

Another good practice is to start the name
of your variable with a lower case letter.
Upper case letters have a different meaning
in programming. You also want to avoid
starting with a number or a special character.

A variable name cannot contain a space. If
you use a space, Python will interpret the
words you typed as two different variables.
So if your variable nhame consists of more
than one word, you need to write these
words together.

Finally, there are several ways to make
variable names better readable when they
consist of several words. For instance, if
you call your variable netPrice, you would
capitalize the P. This notation is called
camel case because the capital letters give
the variable name humps like a camel. You
can also use snake case, which uses an
underscore “_” between words. In the net

price example, it would look like this: net_
price.

Examples of valid variable names:

& name

® last_name

@ Name (but not recommended by us)
& name_l

Examples of invalid variable names:

@ Tname - cannot start with a number.
@ first name - spaces are not allowed.

“"w n

® last-name - the minus sign is not
allowed because Python thinks it's a
subtraction.

o on

@& @age - special characters apart from
are not allowed.

Chapter 9 - Booleans

Another important variable type is the
boolean. Booleans store True or False
values, and they are useful for decision-
making in programs. In Python, we can
create a Boolean variable by assigning True

or False to a name using the “=" operator,
for example:

1 snowing = True

The variable snowing now holds the
boolean value True. Boolean values are
written without quotes, so we will need to
write True or False, not “True” or “False”.

Booleans are essential when you use
conditions, but we will get to that later.

1 snowing = True

2 print(snowing)
Output:

1 True

Chapter 8 - Naming Variables
— 0

Chapter 10 - User
Input

So far, our programs have only displayed
information - but what if we want to make
them more interactive? That’s where the
input() function comes in. It allows users to
enter data, making programs interactive and
fun.

The input() function is used to get text input
from the user.

1 name = input("What is your name?
2 print("Hello " + name + "!™)

Output:
1 What is your name? Max
2 Hello Max!

As you can see in this example, the code
causes our program to ask the user in the
console to write something to be assigned
to the name variable, which will then be
printed along with the word Hello. The word
input tells Python to wait for user input. The
text inside the parentheses, “What is your
name?”, is a prompt that guides the user on
what to enter.

You can also use input to get numbers, for
example:

1 age = input("How old are you?

However, remember that the input function
always treats any user input as a string.
When you want a nhumber, you will have to
convert the user input from a string to a
number. This process will be shown in the
next chapter.

Try it yourself!

Use the input() function to ask the user
for their full name, store the input in a
variable and then print it.

Solution:

1 full_name = input("What is your full name?™")
2 print(full_name)

Output:

1 What 1is your full name? Sam
2 Sam

Chapter 11 -
Typecasting

We will now learn another helpful concept in
Python called typecasting. It sounds fancy,
but it just means changing one type of data
to another. Sometimes, you need to convert
data to a different type to ensure that your
program works correctly. This code snippet
shows a pertinent example of why we need
typecasting.

1 age = 20
2 print("I am

+ age + " years old.")

Output:

1 Traceback (most recent call last):

2 File "/home/runner/workspace/main.py", line 2, in <module
>

5 print("I am " + age + " years old.")

4 IR NG

5

TypeError: can only concatenate str (not "int") to str

We are gettinganerror, because we are trying
to add a number to a string. Python does not
allow that. This is when typecasting comes
in handy. You can convert the number into a
string using str(), for example:

1 age = 20
2 print("I am

n

+ strCage) + " years old.™)

Python turns the number 20 into the string
“20”, and allows it to be joined to the rest of
the string.

You can also typecast in other ways. For
example, we can change a string into a
number by using int() or float(), as shown
in the next example. There, the string “5”
becomes the number 5, so that Python is
able to do the math: 5 + 10 = 15. Typecasting
is a concept that you will use regularly while
programming with Python.

1 number = "5"
2 result = int(nhumber) + 10
3 print(result)

Chapter 10 - User Imput

1

Output:

1 15
Try it yourself!

@ Ask the user to input a number, multiply it
by 7, and then print the result.

Solution:
1 number = input("Enter a number please: ")
2 number = int(number)

3 printCnhumber * 7)

Output:

1 Enter a number please: 5
73 35

Chapter 12 -
Conditions (if & else)

One of the most important concepts in
Python is the condition. It allows vyour
program to make decisions. Instead of
running the same code, your program can
check a condition and choose which code
to run.

1 age = 18

2-1f age >= 18:

3 print("You are an adult.™)
4~ else:

5 print("You are a minor.")

Output:

1 You are an adult.

As you can see in the code snippet above,
we are defining the variable age with the
value 18 and. Then we check if it is greater
than or equal to 18 by using the “>” and “="
operators. If it is greater than or equal to 18,
print(“You are an adult.”) will be executed. If
the age variable is less than 18, print(“You
are a minor.”) will be executed.

The word if starts the condition. In our
example, the condition is age >= 18. Don't
forget the colon (:) after the condition - it
tells Python that the condition ends here

and that the code that needs to be executed
follows. If the condition is True, Python runs
the indented code underneath. If it's False,
Python moves to the else block (if it exists)
and runs that code instead.

If you only want to run a code block if a
condition is true, you can also just use
if without the else as shown in the code
shippet below.

1 age = 17

2

3-1if age >= 18:

4 print("You are an adult.™)

Output:
1

Another important reminder is that you need
to indent the block of code that should only
be run if the if statement is true. Without
the indentation, Python would be unable to
understand when to run the code block, and
it would always run it. However, we will talk
more about indentation later.

In our previous example, we have used the
greater or equal comparison (>=). We can
also check if a value is less (<), greater (>)
, less or equal (<=), or, when we check if a
value is equal, we use two equal signs like
this “==".

We can also use the “==" comparison for
strings. In the next code snippet, we have
an example of a password checker using
the “==" comparison. There, we check if the
string that the user writes is “secret”, if it is,
we print “You may pass.” Otherwise, we print
“Access denied!”.

1 password = input("Password: ")
2

3-if password == "secret":

4 print("You may pass.")

5- else:

6 print("Access denied!")

Output:

1 Password: secret
2 You may pass.

Chapter 12 - Conditions (if & else)

12

Try it yourself!

@ Use an iffelse statement in your own
Python code to check if the user guesses
a number correctly. If the user writes the
correct number, the program should print
“You are right!”. Otherwise, it should print,
“Wrong number.”

Solution:

number = int(input("Guess a number please: "))
secret_number = 34124

- if number == secret_number:
print("You are right!")
v else:
print("Wrong number.™)

NOoO U WN B

Output:

1 Guess a number please: 34124
2 You are right!

Chapter 13 -
Indentation

An important feature of Python that
makes it different from other languages is
indentation. Indentation plays a big role in
how Python understands your code.

Indentation means adding spaces and tabs
at the beginning of a line. This is not just for
making the code look better, it actually tells
Python what belongs together. Let’s take a
look at the example below.

1-if True:
2 print("This line is indented!")
3 print("This line is not.")

Output:

1 This line is indented!
2 This line is not.

As you can see in the output, Python prints
both lines. The first print is indented,
so Python knows that it is part of the if
statement. The second print is not indented,
so it runs after the if block. If we change the
condition from True to False, only the print
that’s not inside the if statement is executed
as you can see on the next example.

1-if False:
7 print("This line is indented!")
3 print("This line is not.")

Output:

1 This line is not.

If you forget to indent when vyou
need to, Python will give you an error
“IndentationError’ That's because Python is
expecting the next line to be indented. This
is how the error would look like:

1-if False:
2 print("oops!™)

Output:

1 File "/home/runner/workspace/main.py", line 2

2 print("oops!")

3 A

4 IndentationError: expected an indented block after 'if'
statement on line 1

A helpful rule is to indent every time you
use a colon (:). For example, after the “if”
statement, the next line should be indented.
Python usually uses 4 spaces for each
indentation level. You can also use the Tab
key, which is the usual way programmers do
it.

Try it yourself!

@ Write a program with a condition. If it
is true, print one text. If it is false, print
another text. Print a third text after the
condition.

Solution:

1-1if True:

2 print("This should only be printed if the condition is
True.")

3~ else:

4 print("This should not be printed if the condition is
True™)

5

6 print("This should always be printed.")

Output:

1 This should only be printed if the condition is True.
2 This should always be printed.

Chapter 13 - Identation
— K]

Chapter 14 - Elif

You already learned how to use if and else,
but there is another keyword: elif. Elif is
short for else if, and it helps your program
choose between multiple options. In Python,
elif is used when you want to check more
than one condition after your initial if. Here
is an example:

1 temperature = 21

2~ 1if temperature > 30:

3 print("It is hot outside!™)

4- elif temperature > 20:

5 print("It is a nice day!")

6~ else:

7 print("You might need a jacket.™)

Output:

1 It is a nice day!

In the code snippet Python checks the first
condition. If the condition is false, it moves
to the elif. If the elif is true, it runs that block.
Otherwise, it goes to the else block.

The word elif is a way to say: “If the first
thing isn’t true, then check this other thing.”
You can have as many elif statements as
you need, and they make your code easier
to read and organize.

Try it yourself!

@ Create a program that asks the user
about the weather and gives clothing
advice. Use one if, multiple elif, and
one else statement to handle different
types of weather, such as sunny, rainy,
cold, and snhowy. For any other input,
display a default message. In short, print
different messages depending on the
input entered.

1 weather = input("What is the weather like today? (sunny,
rainy, cold, snowy): ")

2-1if weather == "sunny":

S print("Wear sunglasses™)

4- elif weather == "rainy":

5 print("Take an umbrella™)

6- elif weather == "cold":

7 print("Wear a warm jacket")

8~ elif weather == "snowy":

9 print("Put on boots and gloves")

10~ else:

11 print("I don’t know that weather, just dress

comfortably")

Output:

1 What is the weather like today? (sunny, rainy, cold, snowy
): sunny

Chapter 15 -
Comparison operators

We will now take a closer look at comparison
operators in Python. They let your program
compare values and they are useful for
making decisions. In Python, comparison
operators are used in conditions to check
if things are equal, greater, less, and more.
Check the code below.

1 a=10
2 b=25
3 print(a > b)

Output:
1 True

When the code is executed, Python checks
if a is greater than b. Since 10 (a) is greater
than 5 (b), it prints True.

Here are some of the most common
comparison operators:

== means “equal to”
I= means “not equal to”
> means “greater than”
< means “less than”

>= means “greater than or equal to”

Chapter 15 - Comparison operators

14

<= means “less than or equal to”

You'll often use these in if statements, as
you can see on the code below.

1 age = 16

2-1if age >= 18:

3 print("You can vote™)

4- else:

5 print("You are too young to vote")

Output:

1 You are too young to vote
Try it yourself!

Write a program that asks the user for
their age and prints messages based on
their age using the comparison operators.
If the user is 18 or older, print “You are an
adult.”, if the user is between 13 and 17,
print “You are a teenager.”, if the user
is 12 or younger, print “You are a child.”
and finally, if the user’s age is exactly 21,
print “Happy 21st birthday!”.

1 age = int(input("Enter your age: "))
2-1if age >= 18:

5 print("You are an adult.™)

4- elif age >= 13:

5 print("You are a teenager.")

6~ else:

7 print("You are a child.")

8

9-if age == 21:

10 print("Happy 21st birthday!™)

Output:

1 Enter your age: 13
2 You are a teenager.

Chapter 16 - The
randint function

The randint is an important Python function
that allows you to add randomness to your
code.

In Python, randint is used to generate a
random integer between two values. But
first, since this function is not part of the
basic Python functions, you need to import
the random module which defines how the
function works. To import a module from a
different library, we use the import word
followed by the module we want to import.
Now, we might not need to import all the
functions of a library, in that case we also
use the word from followed by the library we
want to use, then we write import and finally
the module from that library as displayed on
the example below.

1 from random import randint
2

3 number = randint(l, 10)

4 print(Cnumber)

Output:
11

When you call the randint function, Python
picks a random number between two
numbers, in our case, between 1 and 10
including both 1 and 10. The word randint
stands for “random integer”, and the two
numbers inside the parentheses tell python
the range from which you want to select
the number from. You can change them to
anything you like as long as they are Integer
numbers, for example randint(100,200),
this will return a random Integer between
100 and 200.

Try it yourself!

@ Write a program that uses the randint
function to pick a random number
between 1 and 100, then print the result
with the message “Your surprise number
is X!” where X is the number.

Chapter 16 - The randint function

15

Solution:

1 from random import randint
2
3 number = randint(1l, 100)

4 print("Your surprise number is " + str(number) + "!™)

Output:

1 Your surprise number is 94!

Chapter 17 - The
modulo operator

The task of the modulo operator (%) is very
simple, it gives you the remainder after
division. It is a very simple concept but with
a lot of potential and usage in programming.

1 print(10 % 3)

Output:
1 1

As we can, print(10 % 3) gives the output
1. That is because 10 divided by 3 is 3 with
a remainder of 1. The % symbol tells your
computer, “Give me what is left over after
dividing these two numbers.” It is very
helpful when you want to check for even or
odd numbers, like the next example. In that
case, if the remainder is 0, then the number
is even, otherwise, it is odd.

1 number =7

2

3-1if number % 2 ==
4 print("Even™)
5- else:

6 print("0dd")

Output:
1 0dd

Try it yourself!

@ Create a program that checks if a number
entered by the user is a multiple of 3. If it
is, print “This number is a multiple of 3",
if not, print “This number is not a multiple
of 3"

Solution:
number = int(input("Enter a number: "))

- if number % 3 == 0:
print("This number is a multiple of 3.")
v else:
print("This number is not a multiple of 3")

Output:

AU WN -

1 Enter a number: 5
2 This number is not a multiple of 3

Chapter 18 - While
Loop

Loops are a very important part of
programming as they allow us to repeat
pieces of code until something changes. In
Python, a while loop keeps running while
the condition is True, as shown below.

1 count =1

2

3- while count <= 5:
4 print(count)

5 count = count +1

Output:

uu P wWN PR
u s WN PR

Python prints the numbers 1through 5. That’s
because the word while tells your computer:
“Keep looping as long as this condition is
True.” In this case, we keep looping while
count is less than or equal to 5. Each time
through the loop, we print the number and
then add 1 to the count variable. Without
changing the count variable, the loop would
go on forever. Therefore we always need to
make sure the loop will eventually stop.

Note that we indented everything that
happens inside the loop to help Python
understand which part of the code the loop
should repeat.

Chapter 17 - The modulo operator

16

Try it yourself!

@ Write a while loop that returns the answer
to the factorial of 20 and print the result.
The Factorial of a number is the product
of all positive integers from 1 up to the
given number (e.g., 5! =5%x 4 x 3 x 2 x
1=120).

Solution:

number = 20
factorial = 1
counter = 1

- while counter <= number:
factorial = factorial * counter #multiply the current
factorial by counter
counter = counter + 1 #move to the next number

1
2
8
4
5
6

O o

print("The factorial of 20 is: " + str(factorial))

Output:
1 The factorial of 20 is: 2432902008176640000

Chapter 19 - Loops
inside loops

Loops can also be used inside other loops.
This is also known as nested loops. Nested
loops let you code actions in a grid-like or
layered way. Below, we can see an example
of how nested loops are implemented.

1- for i1 in range(10):

2 row = ""

3- for j in range(10):
4 row = row + "."
5 print(row)

Output:

Ooo~NOUTLE WN -
W WNNNPREF PR
NEFP,WNPEFE WN R

w
w

When the code is executed, Python prints
pairs of numbers: Every combination of
“i” and “|” from 1 to 3. The outer loop runs

first. For each iteration, the inner loop runs
completely. Imagine it like a clock: For every
hour, the minute hand completes a full
rotation. You can use nested loops to do
things like print patterns, build grids, or work
with rows and columns of data.

Notice that we used a different loop, called
a for loop. We will get to them in a later
chapter.

Try it yourself!

@ Use a loop inside a loop to create a
square of “” dots with the dimensions of
10 by 10.

Solution:
1- for i in range(10):
2 rOW — mn
3~ for j in range(10):
4 row = row + "."

5 print(row)

Chapter 20 - Lists

Lists are very useful when you want to store
a collection of items, like a to-do list or a
group of names. In Python, alistis defined by
a set of values wrapped in square brackets
just like the example below.

1 fruits = ["apple", "banana", "cherry"]
2 print(fruits)

Output:
1 ['apple', 'banana', 'cherry']
Each item in the list is separated by a

Chapter 19 - Loops inside loops

17

comma, and you can add, remove, or access
items by their position (index). For example,
you can access the apple string by writing
fruits[0] as displayed on the code snippet
below. Attention: the index always starts at
0.

1 fruits = ["apple", "banana", "cherry"]
2 print(fruits[0])

Output:
1 apple

The output is just “apple”, because it is the
first item. It is important to keep in mind that
in Python the index of lists always starts
from O and not 1. If you want to access the
second item of a list, in this case you would
need to write fruits[1], to access the last
item of a list it would be fruits[-1]. You can
save all kinds of things in lists, Integers,
String, Booleans and many more types of
data. Lists are a very good option when you
need to store multiple values in one place.
Lists also work especially well with loops, as
we will see in the next chapter.

Try it yourself!

@ Use this list “carBrands = [“Toyota”,
“Mercedes”, “Nissan”, “Opel”, “BMW”",
“Fiat”]” and try to print “Toyota”, “Nissan”,
and then “Fiat” while only using the index

values.

Solution:

1 carBrands = ["Toyota", "Mercedes", "Nissan", "Opel", "BMW",
"Fiat"]

2

3 print(carBrands[@]) #Toyota (first item, index @)

4 print(carBrands[2]) #Nissan (third item, index 2)

5 print(carBrands[-1]) #Fiat (sixth item, index 5 or last
index which is “-1”)

Output:

1 Toyota
2 Nissan
3 Fiat

Chapter 21 - for loops

A for loop is a programming mechanism
that allows you to repeat a block of code a
specific number of times or iterate through
items in a sequence like a list. The for loop is
commonly used when you know in advance
how many times you want to run the loop, or
when you need to go through each element
in a list.

1- for i in range(5):

2 print(i)

Output:

u ph wN
APUWNFPO

When the code above is executed, it prints
the numbers 0 through 4. The word for tells
your computer to loop through each item. i
is the variable that changes each time, and
range(5) makes the loop iterate 5 times,
giving us the numbers from O to 4 (remember
that Python always starts counting at 0). You
can replace the i with any other variable.

1 fruits = ["apple", "banana", "cherry"]
2

3- for fruit in fruits:

4 print(fruit)

Output:

1 apple
2 banana
3 cherry

You can also use for loops to go through
items in a list, as you can see above. It prints
each fruit in the list one at a time. fruits is a
variable of the type list.

While loops and for loops can often be
used interchangeably, however, as a rule of
thumb, you should use for loops when you
know in advance how many iterations the
loop will run through.

Chapter 21 - for loops

18

Try it yourself!

@ Use a for loop to print all the car brands

in this list “carBrands = [“Toyota”,
“Mercedes”, “Nissan”, “Opel”, “BMW”"
”Fiat"]"-

Solution:

1 carBrands = ["Toyota", "Mercedes", "Nissan", "Opel", "BMW",
"Fiat"]

2~ for brand in carBrands:

B print(brand)

Output:

Toyota
Mercedes
Nissan
Opel

BMW

Fiat

Ul WN B

Chapter 22 -
Dictionaries

In the programming world, a dictionary is
just like a real-world dictionary. But instead
of words and definitions, it stores pairs of
information, like a person’s name and age.
They work using keys which are like the
words in a real dictionary and values which
are like the definitions of those words. Each
key points to a value.

1 person = {"name": "Alice", "age": 30}
2 print(person)

Output:
1 {'name': 'Alice', 'age': 30}

In the example above, the person variable
is a dictionary. The key, “name” is pointing
to the value “Alice”, and the key “age” is
pointing to the value “30”. The word before
the colon is the key, and the word after is
the value.

To create a dictionary, you use an opening
curly brace at the start ({), followed by
the pairs of key and values separated by
commas (,), then to end the dictionary, you
need to add a closing curly brace (}).

1 person = {"name": "Alice", "age": 30}
2 print(person["name"])
Output:

1 Alice

The most useful feature of the dictionary is
that you can access the values by referring
to their keys, like the example above, where
we are requesting the value of the variable
person with the key name, which results in
the output “Alice”.

Dictionaries are great when you want to
organize information clearly and make it
easily accessible, like contact info, game
scores, or settings.

Try it yourself!

@ Use a dictionary to store all your physical
features in a variable, for example, eye
color, hair color, height, and gender. Then,
print your hair color using the dictionary.

Solution:
1- myFeatures = {
2 "eye_color": "brown",
3 "hair_color": "black",
4 "height" : "1.8@m",
5 "gender": "male"
6 }
7 print("My hair color is: " + myFeatures["hair_color"])

Output:
1 My hair color is: black

Chapter 23 - functions

One of the most important building blocks
in Python are functions. They help you
organize your code and make it reusable. A
function is a block of code that runs when
you call it.

To create a function, you start by writing def
followed by the name of the function and
then parentheses and a colon, as displayed
below.

1- def greet():
2 print("Hello there!™)

Chapter 22 - Dictionaries

19

If you execute the code, nothing will happen
because the function is not being called
anywhere. To use it, we need to call it, and
the way we do that is by writing the name
of the function along with the parentheses,
as you can see below. When you call the
function, all the code inside of it is executed,
in this case print(“Hello there!”).

1~ def greet():

2 print("Hello there!™)
3

4 greet()

Output:
1 Hello there!

Inside the parentheses you can add inputs
called parameters. Parameters are like
placeholders or “empty boxes” a function
uses to receive information. When we are
creating a function, we give it parameters,
which are the names of the variables we
are expecting. When we call the function,
we provide arguments, which are the actual
values that will be stored in those variables.

1- def isEven(number):
2- 1if (number%2 == 0):

3 print("Your number is even.")
4- else:

5 print("Your number is odd.™)
6

7 userInput = int(input("Type a number: "))
8 1isEven(userInput)

Output:

1 Type a number: 5
2 Your number 1is odd.

Inthe code above, we are creating a function
that has the parameter number and, when
called, it verifies if the number is odd or not,
printing different messages based on the
result.

Let's break it down a little: lin line 1, we are
defining the function, in line 7, we request
the user to enter a number on the console
and then use typecasting to convert the
string to an integer. Then, on line 8, we call
the function isEven and pass the variable
userlnput as the argument, which means
that, when the function is executed, the

number parameter takes the value of
userinput.

The advantage of this approach is that you
can reuse this code block whenever you
need to check if a number is odd or even.
All you need to do is call the function with a
single line:

1 1isEven(nhumber)
Try it yourself!

@ Createafunctioncalled“welcomeMessage”
that receives a name as a parameter and
prints a customized welcoming message
with the name entered by the user with the
input function.

Solution:

- def welcomeMessage(name):
print("Welcome to the program, "+ name + "!")

i
2
5
4 user_name = input("Enter you name: ")
5!
(9

welcomeMessage(user_name)

Output:

1 Enter you name: Max
2 Welcome to the program, Max!

Chapter 24 - Multiple
function parameters
and return

In the previous chapter, we already covered
the basics of how functions work. However,
there are still more aspects of them, like
the return values or working with multiple
parameters. Those aspects make functions
even more powerful.

So far, in the examples provided, we have
only seen functions with no parameters
or with 1 parameter. However, you can
use many parameters just as long as you
separate them with a comma (just like you
do with the items of a list).

Chapter 24 - Multiple function parameters and return

20

1- def add(a, b):

2 result = a + b
3} return result
4
5

additionResult = add(3, 5)
6
7 print(additionResult)

Output:
1 8

On the code above we can see a function
with two parameters and a return. If we
removed line 3, that function would be
useless since we are not using the result of
the addition. That's why we are using the
keyword return to create the return value of
this function. When executed, the function
takes two numbers and returns their sum,
8. The return keyword tells Python to give
back a value. That value can then be stored
in a variable, used in another calculation, or
printed out just like what we are doing in line
5 by assigning the return of the function add
to the variable additionResult.

Without the return, the function just runs
and finishes. With the return, you can keep
and reuse what it creates.

Another important detail of the functions is
that, if you have a variable inside of them,
you cannot access it outside, for example,
in the example below, inside the function
we are defining the variable result as 1, and
outside we have a variable with the same
name but with the value 999999, at the
end of the code, we print the variable value.
The value printed is the value of the variable
that’s outside the function.

1- def randomFunction():
2 result = 1

3}

4 result = 999999

5

6 print(result)

Output:
1 999999

Try it yourself!

@ Write a function that returns the average
of 3 numbers, then print the result.

Solution:

def average_of_three(a, b, c):
return (a + b + ¢) / 3

10
20
30

1-

2

5

4 numl
5 num2
6

7

8

9

num3

result = average_of_three(numl, num2, num3)

print("The average is: " + str(result))

Output:
1 The average is: 20.0

Chapter 24 - Multiple function parameters and return

21

:***** Co-funded by ggl{;ﬁg
S the European Union WORLD |mgeniousknuwledge

